
Smart Global Ecosystems - Guide to accessing data with
a REST API

Guillermo Vega Gorgojo

April 2021 (updated in June 2021)

1. Introduction

This document is a guide for accessing some forestry datasets through a Web API. Specifically, the datasets are the

following:

The Spanish Forestry Inventory (IFN3)

The Spanish Forestry Map (MFE50)

These datasets have been integrated and available for querying at this public endpoint:

https://forestexplorer.gsic.uva.es/sparql/. A sample application that exploits this data is Forest Explorer.

The problem is that working with such integrated dataset requires knowledge of several technologies, at least the

RDF data model and the SPARQL query language. Instead, you are going to use a REST API that I have configured

for this case.

It is recommended some basic knowledge of the following topics (check the resources):

REST APIs

Learn REST: A RESTful Tutorial, by Todd Fredrich

REST: a FAQ, by Diogo Lucas

RFC 2616

JSON

RFC 8259

URIs and IRIs

RFC 3986

RFC 3987

In order to use the proposed API you are going to use a GUI REST client, Postman. This client allows you to save

both calls and responses, is free, is easy to configure, and works on both Mac and PC, as well as in modern web

browsers such as Firefox or Chrome.

2. First steps with Postman and the API

�. Go to https://www.postman.com/downloads/ and get the Postman app or try the Web version (this is the one I

will use)

�. Create an account and sign in when prompted

�. If this is your first time launching Postman, a welcome screen appears. Click Create new in order to create a

new request

�. Insert the following URI into the box next to GET: https://crafts.gsic.uva.es/apis/globaleco/

�. Click Send

The response appears in the lower pane. For example:

https://forestexplorer.gsic.uva.es/sparql/
https://forestexplorer.gsic.uva.es/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-query/
https://www.restapitutorial.com/
https://medium.com/@diogo.lucas/rest-a-faq-b3cd7ed62828
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3987
https://www.getpostman.com/
https://www.postman.com/downloads/

�. You are unauthorized to perform such operation!

Click the Authorization tab, select Bearer Token as type, and then use c41b6cd1-9ec5-40cf-9274-
d3fd9151b67d as Token.

Click Send and you will get a valid response:

The response is the configuration file that I've prepared to set up the API.

3. A quick look to the configuration file

The configuration file is a long JSON object with the instructions to access the target datasets through a REST API.

Don't worry, we'll just cover the basics to understand what is about and how you can use it to access the data.

The configuration file has the following keys:

apiId : the name of the API (value globaleco)

endpoints : an array with the information to access the data sources. The primary source is crossforest ,
containing the IFN3 and MFE50 datasets. dbpedia is a secondary source that is only employed to gather

additional information about species

model : an array with all the resource types exposed by the API. Each resource type includes:

An id such as Tree , Position , Species , etc.

Several attributes within the arrays oprops , dprops , and types . Here you should only care about the
label (corresponding to the attribute name); the rest of information is employed for extracting the data

from the endpoints

queryTemplates : an array with a number of SPARQL query templates. I have prepared them to easily query the

contents of the datasets without requiring knowledge of SPARQL. Each template includes:

An id such as allSpecies , countTrees , treesInBox , etc.

A textual description of the template (read it to grasp what is the template purposed for)

The actual template . This is for the query engine, so you don't need to read it

The response of a query is essentially a table, the column names correspond to the variables

A template can be parametrized providing values to the declared parameters . Note that parameters can
be optional and have an expected type

4. Using the API to retrieve representations of resources

It is very easy to get a representation of a resource with a known IRI. This just requires a GET operation with this

format: https://crafts.gsic.uva.es/apis/globaleco/resource?id={id}&iri={iri}

You only have to replace {id} with the resource type and {iri} with the IRI of the resource. Let's try with an

example, we have a tree with IRI https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/ifn/tree/05-
0810-A-4-11 :

�. Check the configuration file https://crafts.gsic.uva.es/apis/globaleco/ in Postman to identify the id of

the resource type: Tree

�. Craft the URI of the GET operation following the format above:

https://crafts.gsic.uva.es/apis/globaleco/resource?
id=Tree&iri=https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/ifn/tree/05-0810-A-4-11

�. Click Create new in Postman to create a new request

�. Insert the crafted URI into the box next to GET

�. Click the Authorization tab, select Bearer Token as type, and then use c41b6cd1-9ec5-40cf-9274-
d3fd9151b67d as Token

�. Click Send to get your response:

The response is a JSON object with the same keys defined for a Tree in the model of the API.

You are probably wondering what species is https://datos.iepnb.es/def/sector-publico/medio-
ambiente/ifn/Species43 . You can easily find it with a new GET request (when crafting the new URI check its

resource type in the API model to set the right id parameter, it is Species in this case):

https://crafts.gsic.uva.es/apis/globaleco/resource?id=Species&iri=https://datos.iepnb.es/def/sector-
publico/medio-ambiente/ifn/Species43

Similarly, you can retrieve information about the plot with IRI https://datos.iepnb.es/recurso/sector-
publico/medio-ambiente/ifn/plot/05-0810-A-4 . The corresponding URI is:

https://crafts.gsic.uva.es/apis/globaleco/resource?id=Plot&iri=https://datos.iepnb.es/recurso/sector-
publico/medio-ambiente/ifn/plot/05-0810-A-4

5. Retrieve multiple representations of resources with one call

Imagine that you have many resources of the same type, e.g. trees https://datos.iepnb.es/recurso/sector-
publico/medio-ambiente/ifn/tree/05-0810-A-4-18 , https://datos.iepnb.es/recurso/sector-publico/medio-
ambiente/ifn/tree/06-0035-A-1-5 , and https://datos.iepnb.es/recurso/sector-publico/medio-
ambiente/ifn/tree/05-0093-A-3C-6 .

You can retrieve all their representations with just one call. The format of the corresponding GET operation is:

https://crafts.gsic.uva.es/apis/globaleco/resources?id={id}&iris={iriA}&iris={iriB}...

In our example:

https://crafts.gsic.uva.es/apis/globaleco/resources?
id=Tree&iris=https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/ifn/tree/05-0810-A-4-
18&iris=https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/ifn/tree/06-0035-A-1-
5&iris=https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/ifn/tree/05-0093-A-3C-6

6. How can I know the IRIs of resources?

We have seen how we can use the API to retrieve representations of resources. However, this requires knowing

somehow their IRIs in advance. Query templates are intended to fulfil this need. As you can see in the config file, I

have prepared a number of query templates. Let's examine how to work with them.

First of all, this is the format of the GET operation for query templates:

https://crafts.gsic.uva.es/apis/globaleco/query?id={id}&{parA}={valA}&{parB}={valB}...

Note that the id can be found in the config file, while suitable parameters and values are set for the query

template at hand. Let's try with the query template allSpecies (check the config file):

{
 "id": "allSpecies",
 "description": "Obtain all the species (variable \"species\") with their scientific names (variable
 "template": "select ?species ?sciname (group_concat(distinct ?esname;separator=\"; \") as ?esnames)
 "variables": [
 "species",

In this case there are no query parameters, so you only need to make this GET call:

https://crafts.gsic.uva.es/apis/globaleco/query?id=allSpecies

We get the answer directly from the SPARQL endpoint in JSON-LD format. It is a regular JSON object, although a

bit more verbose than needed. Anyway, the important thing to look is the bindings array. Each object in the array

is a valid answer (a row of the table of results) with the same fields defined in the query template. You can browse

the list of species and get the IRIs of the ones you are interested, e.g. https://datos.iepnb.es/def/sector-
publico/medio-ambiente/ifn/Species43 is the IRI of Quercus pyrenaica.

7. Setting parameters in queries

 "sciname",
 "esnames",
 "ennames"
],
 "parameters": [],
 "endpoint": "crossforest"
}

https://json-ld.org/

We are now prepared to pose more complex queries. Let's go with the query template countTrees (check the

config file):

Since all the parameters are optional, we can just count all the trees in the dataset by making this GET call:

https://crafts.gsic.uva.es/apis/globaleco/query?id=countTrees

In a next step we can get the count of all the trees of species Quercus pyrenaica by setting the parameter species
to https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Species43 :

https://crafts.gsic.uva.es/apis/globaleco/query?
id=countTrees&species=https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Species43

We can browse the list of species and find that the IRI of genus Quercus is https://datos.iepnb.es/def/sector-
publico/medio-ambiente/ifn/Genus121 . We can thus ask how many Quercus we have:

https://crafts.gsic.uva.es/apis/globaleco/query?
id=countTrees&species=https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Genus121

We can also specify a specific region of interes, so we can have:

GET https://crafts.gsic.uva.es/apis/globaleco/query
 id countTrees
 species https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Genus121
 lngwest 0
 lngeast 3

{
 "id": "countTrees",
 "description": "Obtain the count of the trees (variable \"count\") of an optional species (paramet
 "template": "SELECT count(?tree) as ?count\nWHERE {\n ?tree a <https://datos.iepnb.es/def/sector-
 "variables": [
 "count"
],
 "parameters": [
 {
 "label": "species",
 "type": "iri",
 "optional": true
 },
 {
 "label": "lngwest",
 "type": "number",
 "optional": true
 },
 {
 "label": "lngeast",
 "type": "number",
 "optional": true
 },
 {
 "label": "latnorth",
 "type": "number",
 "optional": true
 },
 {
 "label": "latsouth",
 "type": "number",
 "optional": true
 }
],
 "endpoint": "crossforest"
}

 latnorth 40
 latsouth 37

And the resulting URI is https://crafts.gsic.uva.es/apis/globaleco/query?
id=countTrees&lngwest=0&lngeast=3&latnorth=40&latsouth=37&species=https://datos.iepnb.es/def/sector-
publico/medio-ambiente/ifn/Genus121 (note that the order of query parameters is not relevant).

8. More complex queries

Let's continue with more query templates: numericTreeProps is intended to obtain the IRIs of some tree properties

to apply in the query templates maxPropTrees and avgPropTrees . As numericTreeProps has no parameters, you

can get the results by calling:

https://crafts.gsic.uva.es/apis/globaleco/query?id=numericTreeProps

Note that there are seven different properties available for querying about numeric properties:

https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasDBH1InMillimeters
https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasDBH2InMillimeters

https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasTotalHeightInMeters
https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasVolumeWithBarkInM3
https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasVolumeWithoutBarkInM3
https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasVolumeFirewoodInM3
https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasVolumeIncreaseInM3

We are ready to use query templates maxPropTrees and avgPropTrees (note that they require a propiri
parameter). After checking these query templates in the API config it should be easy to employ them. For example:

GET https://crafts.gsic.uva.es/apis/globaleco/query
 id avgPropTrees
 propiri https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/hasTotalHeightInMeters
 species https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Species43
 lngwest 0
 lngeast 3
 latnorth 40
 latsouth 37

We can also get the trees (and their locations) in a bounding box (setting an optional species as parameter) by

using the query template treesInBox :

 {
 "id": "treesInBox",
 "description": "Obtain trees (variable \"tree\") of an optional species (parameter \"species\")
 "template": "SELECT DISTINCT ?tree ?lat ?lng\nWHERE {\n ?tree a <https://datos.iepnb.es/def/se
 "variables": [
 "tree",
 "lat",
 "lng"
],
 "parameters": [
 {
 "label": "species",
 "type": "iri",
 "optional": true
 },
 {
 "label": "lngwest",
 "type": "number",
 "optional": true
 },
 {
 "label": "lngeast",
 "type": "number",
 "optional": true
 },
 {
 "label": "latnorth",
 "type": "number",
 "optional": true
 },
 {
 "label": "latsouth",
 "type": "number",
 "optional": true
 },
 {
 "label": "limit",
 "type": "integer",
 "optional": true
 },
 {
 "label": "offset",
 "type": "integer",
 "optional": true

This query template works as expected, but take into account that its results can be paginated using parameters

limit and offset . For example, this query gets the first ten trees of species Quercus pyrenaica in the same
bounding box as before:

GET https://crafts.gsic.uva.es/apis/globaleco/query
 id treesInBox
 species https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Species43
 lngwest 0
 lngeast 3
 latnorth 40
 latsouth 37
 limit 10
 offset 0

The resulting URI is thus https://crafts.gsic.uva.es/apis/globaleco/query?
id=treesInBox&lngwest=0&lngeast=3&latnorth=40&latsouth=37&limit=10&offset=0&species=https://datos.iepn
b.es/def/sector-publico/medio-ambiente/ifn/Species43

If we want to get the following page of ten trees, then we have:

GET https://crafts.gsic.uva.es/apis/globaleco/query
 id treesInBox
 species https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Species43
 lngwest 0
 lngeast 3
 latnorth 40
 latsouth 37
 limit 10
 offset 10

And the new URI for this query is https://crafts.gsic.uva.es/apis/globaleco/query?
id=treesInBox&lngwest=0&lngeast=3&latnorth=40&latsouth=37&limit=10&offset=10&species=https://datos.iep
nb.es/def/sector-publico/medio-ambiente/ifn/Species43

9. Remaining queries

The following query template is plotsInBox . This works very similar to the previous treesInBox , as the
associated geometries of plots are points, as in the case of trees.

With respect to patches, their geometries are more complex, typically a polygon, defined by a sequence of points.

For instance, we can easily obtain the representation of a patch if we know its IRI. In the case of patch

https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/mfe/patch/s5-02-1394795 we can make this

call, as before: https://crafts.gsic.uva.es/apis/globaleco/resource?

 }
],
 "endpoint": "crossforest"
 }

id=Patch&iri=https://datos.iepnb.es/recurso/sector-publico/medio-ambiente/mfe/patch/s5-02-1394795

Several things to observe:

Patches have a soil use

The polygon object has all the information about the patch geometry: bounds, area, layer, and sequence of

points (check the API model)

There is additional information about the species in the patch, canopy cover, and so on

The template query patchesInBox is prepared for obtaining the patches in a bounding box (please check it in the

config file of the API):

You can set the bounding box parameters (as in the case of plotsInBox and treesInBox). Since the
geometry of a patch is a polygon and not a point, the query will find the patches that are contained or intersect

with the bounding box

The pagination works exactly as before

You can optionally set areamin as the minimum area (in square meters) for retrieving a patch

You can optionally specify the soilUse of interest. Use the template query allSoilUses to find the IRIs of the

soil uses available

You can optionally specify the layer of interest. Note that there are three different layers of patches available

(check them with the template query allPatchLayers)

We are now ready to use this template query. Let's try it to find the first five patches in the original layer, with

wooded area as soil use, in the previous bounding box, and with a minimum area of 10000 square meters:

GET https://crafts.gsic.uva.es/apis/globaleco/query
 id patchesInBox
 layer http://crossforest.eu/ilu/data/layer/original
 soilUse https://datos.iepnb.es/def/sector-publico/medio-ambiente/ifn/Use110
 lngwest 0
 lngeast 3
 latnorth 40
 latsouth 37
 limit 5
 offset 0

And the new URI for this query is https://crafts.gsic.uva.es/apis/globaleco/query?
id=patchesInBox&layer=http://crossforest.eu/ilu/data/layer/original&soilUse=https://datos.iepnb.es/def
/sector-publico/medio-
ambiente/ifn/Use110&lngwest=0&lngeast=3&latnorth=40&latsouth=37&limit=5&offset=0

10. Further information

This API has been built with CRAFTS (Configurable RESTful APIs For Triple Stores)

The CRAFTS API is documented here

https://crafts.gsic.uva.es/
https://crafts.gsic.uva.es/docs/

